Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
2.
Biomolecules ; 13(9)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37759704

RESUMO

The accumulation and aggregation of alpha-synuclein (α-Syn) are pathological processes associated with Parkinson's disease, indicating that the regulation of protein is a crucial etiopathological mechanism. Interestingly, human serum and cerebrospinal fluid contain autoantibodies that recognize α-Syn. This potentially demonstrates an already existing, naturally decomposing, and protective system. Thus, quantitative or qualitative alterations, such as the modified antigen binding of so-called naturally occurring autoantibodies against α-Syn (nAbs-α-Syn), may induce disease onset and/or progression. We investigated the serum titers and binding characteristics of nAbs-α-Syn in patients suffering from sporadic Parkinson's disease (n = 38), LRRK2 mutation carriers (n = 25), and healthy controls (n = 22). METHODS: Titers of nAbs-α-Syn were assessed with ELISA and binding affinities and kinetics with SPR. Within the patient cohort, we discriminated between idiopathic and genetic (LRRK2-mutated) variants. RESULTS: ELISA experiments revealed no significant differences in nAbs-α-Syn serum titers among the three cohorts. Moreover, the α-Syn avidity of nAbs-α-Syn was also unchanged. CONCLUSIONS: Our findings indicate that nAbs-α-Syn concentrations or affinities in healthy and diseased persons do not differ, independent of mutations in LRRK2.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/imunologia , Autoanticorpos , Leucina , Mutação , Doença de Parkinson/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética
3.
Mov Disord ; 38(3): 378-384, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36645106

RESUMO

Two recent, high-profile manuscripts reported negative results with two parallel approaches of passive immunization targeting α-synuclein in a population of patients with early Parkinson's disease (PD). These phase II studies failed to show a bona fide disease-modifying neuroprotective effect on PD progression, despite the evidence that these antibodies effectively bind native α-synuclein in human serum. Here, we discuss the possible reasons that could help explain the lack of clinical efficacy. In particular, we highlight (1) the wealth of evidence supporting the notion of α-synuclein as a valid therapeutic target; (2) the lack of evidence of target engagement in the aforementioned studies, especially of the elusive oligomeric species, the likely culprits in disease pathogenesis and/or its propagation; (3) the limitations, especially in terms of timing passive immunization, of preclinical models, where the same α-synuclein antibodies succeeded in mitigating disease manifestations; (4) the consideration of possibly intervening at an even earlier stage of disease in future trials; and (5) the multitude of strategies beyond passive immunization that could be used to combat α-synuclein-mediated neurodegeneration, if in the end the current approach is not fruitful. Overall, our perception is that converging developments in the field, among them novel bioassays and biomarkers, improved cellular and animal models and objective measurements of motor activities integrated into clinical trials, if further optimized, will gradually move the momentum of the field forward. This, to better test the concept of whether α-synuclein-targeting therapies can indeed deliver the "holy grail" of neuroprotection to the benefit of the PD community. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/imunologia , Anticorpos/imunologia , Anticorpos/uso terapêutico , Biomarcadores , Doença de Parkinson/tratamento farmacológico , Resultado do Tratamento
4.
N Engl J Med ; 387(5): 408-420, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35921450

RESUMO

BACKGROUND: Aggregated α-synuclein plays an important role in Parkinson's disease pathogenesis. Cinpanemab, a human-derived monoclonal antibody that binds to α-synuclein, is being evaluated as a disease-modifying treatment for Parkinson's disease. METHODS: In a 52-week, multicenter, double-blind, phase 2 trial, we randomly assigned, in a 2:1:2:2 ratio, participants with early Parkinson's disease to receive intravenous infusions of placebo (control) or cinpanemab at a dose of 250 mg, 1250 mg, or 3500 mg every 4 weeks, followed by an active-treatment dose-blinded extension period for up to 112 weeks. The primary end points were the changes from baseline in the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) total score (range, 0 to 236, with higher scores indicating worse performance) at weeks 52 and 72. Secondary end points included MDS-UPDRS subscale scores and striatal binding as assessed on dopamine transporter single-photon-emission computed tomography (DaT-SPECT). RESULTS: Of the 357 enrolled participants, 100 were assigned to the control group, 55 to the 250-mg cinpanemab group, 102 to the 1250-mg group, and 100 to the 3500-mg group. The trial was stopped after the week 72 interim analysis owing to lack of efficacy. The change to week 52 in the MDS-UPDRS score was 10.8 points in the control group, 10.5 points in the 250-mg group, 11.3 points in the 1250-mg group, and 10.9 points in the 3500-mg group (adjusted mean difference vs. control, -0.3 points [95% confidence interval {CI}, -4.9 to 4.3], P = 0.90; 0.5 points [95% CI, -3.3 to 4.3], P = 0.80; and 0.1 point [95% CI, -3.8 to 4.0], P = 0.97, respectively). The adjusted mean difference at 72 weeks between participants who received cinpanemab through 72 weeks and the pooled group of those who started cinpanemab at 52 weeks was -0.9 points (95% CI, -5.6 to 3.8) for the 250-mg dose, 0.6 points (95% CI, -3.3 to 4.4) for the 1250-mg dose, and -0.8 points (95% CI, -4.6 to 3.0) for the 3500-mg dose. Results for secondary end points were similar to those for the primary end points. DaT-SPECT imaging at week 52 showed no differences between the control group and any cinpanemab group. The most common adverse events with cinpanemab were headache, nasopharyngitis, and falls. CONCLUSIONS: In participants with early Parkinson's disease, the effects of cinpanemab on clinical measures of disease progression and changes in DaT-SPECT imaging did not differ from those of placebo over a 52-week period. (Funded by Biogen; SPARK ClinicalTrials.gov number, NCT03318523.).


Assuntos
Anticorpos Monoclonais Humanizados , Antiparkinsonianos , Doença de Parkinson , alfa-Sinucleína , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antiparkinsonianos/efeitos adversos , Método Duplo-Cego , Humanos , Doença de Parkinson/tratamento farmacológico , Resultado do Tratamento , alfa-Sinucleína/imunologia
5.
Mol Neurobiol ; 59(7): 3980-3995, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460053

RESUMO

Spreading of alpha-synuclein (αSyn) may play an important role in Parkinson's disease and related synucleinopathies. Passive immunization with anti-αSyn antibodies is a promising method to slow down the spreading process and thereby the progression of synucleinopathies. Currently, it remains elusive which specific characteristics are essential to render therapeutic antibodies efficacious. Here, we established a neuronal co-culture model, in which αSyn species are being released from αSyn-overexpressing cells and induce toxicity in a priori healthy GFP-expressing cells. In this model, we investigated the protective efficacy of three anti-αSyn antibodies. Only two of these antibodies, one C-terminal and one N-terminal, protected from αSyn-induced toxicity by inhibiting the uptake of spreading-competent αSyn from the cell culture medium. Neither the binding epitope nor the affinity of the antibodies towards recombinant αSyn could explain differences in biological efficacy. However, both protective antibodies formed more stable antibody-αSyn complexes than the non-protective antibody. These findings indicate that the stability of antibody-αSyn complexes may be more important to confer protection than the binding epitope or affinity to recombinant αSyn.


Assuntos
Anticorpos , Doença de Parkinson , Sinucleinopatias , alfa-Sinucleína , Anticorpos/imunologia , Anticorpos/farmacologia , Epitopos/imunologia , Humanos , Neurônios , Doença de Parkinson/imunologia , Doença de Parkinson/terapia , Sinucleinopatias/imunologia , Sinucleinopatias/terapia , alfa-Sinucleína/imunologia
6.
Genes (Basel) ; 12(6)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205689

RESUMO

Accumulation of α-Synuclein (αSyn) in nigral dopaminergic neurons is commonly seen in patients with Parkinson's disease (PD). We recently reported that transduction of intracellular single-chain intrabody targeting the 53-87 amino acid residues of human αSyn by recombinant adeno associated viral vector (AAV-NAC32) downregulated αSyn protein in SH-SY5Y cells and rat brain. This study characterizes the behavioral phenotype and dopaminergic protection in animals receiving AAV-NAC32. Our results show that adult DAT-Cre rats selectively overexpress αSyn in nigra dopaminergic neurons after local administration of AAV-DIO-αSyn. These animals develop PD-like phenotype, including bradykinesia and loss of tyrosine hydroxylase (TH) immunoreactivity in substantia nigra pars compacta dorsal tier (SNcd). An injection of AAV-NAC32 to nigra produces a selective antibody against αSyn and normalizes the behavior. AAV-NAC32 significantly increases TH, while reduces αSyn immunoreactivity in SNcd. Altogether, our data suggest that an AAV-mediated gene transfer of NAC32 antibody effectively antagonizes αSyn-mediated dopaminergic degeneration in nigra, which may be a promising therapeutic candidate for synucleinopathy or PD.


Assuntos
Anticorpos/uso terapêutico , Imunoterapia/métodos , Locomoção , Doença de Parkinson/terapia , alfa-Sinucleína/imunologia , Animais , Anticorpos/imunologia , Células CHO , Cricetinae , Cricetulus , Dependovirus/genética , Neurônios Dopaminérgicos/metabolismo , Vetores Genéticos/genética , Masculino , Doença de Parkinson/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Ratos , Ratos Long-Evans , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , alfa-Sinucleína/química , alfa-Sinucleína/genética
7.
Cells ; 10(5)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063062

RESUMO

INTRODUCTION: Parkinson's disease is characterized by non-motor/motor dysfunction midbrain neuronal death and α-synuclein deposits. The accepted hypothesis is that unknown environmental factors induce α-synuclein accumulation in the brain via the enteric nervous system. MATERIAL AND METHODS: Monoclonal antibodies made against recombinant α-synuclein protein or α-synuclein epitope 118-123 were applied to the antigens of 180 frequently consumed food products. The specificity of those antibody-antigen reactions was confirmed by serial dilution and inhibition studies. The Basic Local Alignment Search Tool sequence matching program was used for sequence homologies. RESULTS: While the antibody made against recombinant α-synuclein reacted significantly with 86/180 specific food antigens, the antibody made against α-synuclein epitope 118-123 reacted with only 32/180 tested food antigens. The food proteins with the greatest number of peptides that matched with α-synuclein were yeast, soybean, latex hevein, wheat germ agglutinin, potato, peanut, bean agglutinin, pea lectin, shrimp, bromelain, and lentil lectin. Conclusions: The cross-reactivity and sequence homology between α-synuclein and frequently consumed foods, reinforces the autoimmune aspect of Parkinson's disease. It is hypothesized that luminal food peptides that share cross-reactive epitopes with human α-synuclein and have molecular similarity with brain antigens are involved in the synucleinopathy. The findings deserve further confirmation by extensive research.


Assuntos
Alérgenos/imunologia , Reações Antígeno-Anticorpo , Proteínas na Dieta/imunologia , Homologia de Sequência de Aminoácidos , alfa-Sinucleína/imunologia , Alérgenos/química , Reações Cruzadas , Proteínas na Dieta/química , Epitopos/química , Epitopos/imunologia , Alimentos , Humanos , alfa-Sinucleína/química
8.
Acta Neuropathol ; 142(3): 495-511, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991233

RESUMO

The diagnosis of Parkinson's disease (PD) and atypical parkinsonian syndromes is difficult due to the lack of reliable, easily accessible biomarkers. Multiple system atrophy (MSA) is a synucleinopathy whose symptoms often overlap with PD. Exosomes isolated from blood by immunoprecipitation using CNS markers provide a window into the brain's biochemistry and may assist in distinguishing between PD and MSA. Thus, we asked whether α-synuclein (α-syn) in such exosomes could distinguish among healthy individuals, patients with PD, and patients with MSA. We isolated exosomes from the serum or plasma of these three groups by immunoprecipitation using neuronal and oligodendroglial markers in two independent cohorts and measured α-syn in these exosomes using an electrochemiluminescence ELISA. In both cohorts, α-syn concentrations were significantly lower in the control group and significantly higher in the MSA group compared to the PD group. The ratio between α-syn concentrations in putative oligodendroglial exosomes compared to putative neuronal exosomes was a particularly sensitive biomarker for distinguishing between PD and MSA. Combining this ratio with the α-syn concentration itself and the total exosome concentration, a multinomial logistic model trained on the discovery cohort separated PD from MSA with an AUC = 0.902, corresponding to 89.8% sensitivity and 86.0% specificity when applied to the independent validation cohort. The data demonstrate that a minimally invasive blood test measuring α-syn in blood exosomes immunoprecipitated using CNS markers can distinguish between patients with PD and patients with MSA with high sensitivity and specificity. Future optimization and validation of the data by other groups would allow this strategy to become a viable diagnostic test for synucleinopathies.


Assuntos
Exossomos/imunologia , Atrofia de Múltiplos Sistemas/diagnóstico , Neurônios/metabolismo , Oligodendroglia/metabolismo , Doença de Parkinson/diagnóstico , alfa-Sinucleína/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Biomarcadores , Estudos de Coortes , Diagnóstico Diferencial , Ensaio de Imunoadsorção Enzimática , Feminino , Voluntários Saudáveis , Humanos , Imunoprecipitação , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/sangue , Doença de Parkinson/sangue , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Parkinsonism Relat Disord ; 87: 98-104, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34020303

RESUMO

INTRODUCTION: Ubiquitous naturally occurring autoantibodies (nAbs) against alpha-synuclein (α-syn) may play important roles in the pathogenesis of Multiple System Atrophy (MSA) and Parkinson's disease (PD). Recently, we reported reduced high-affinity/avidity anti-α-syn nAbs levels in plasma from MSA and PD patients, along with distinct inter-group immunoglobulin (Ig)G subclass distributions. The extent to which these observations in plasma may reflect corresponding levels in the cerebrospinal fluid (CSF) is unknown. METHODS: Using competitive and indirect ELISAs, we investigated the affinity/avidity of CSF anti-α-syn nAbs as well as the CSF and plasma distribution of IgG subclasses and IgM nAbs in a cross-sectional cohort of MSA and PD patients. RESULTS: Repertoires of high-affinity/avidity anti-α-syn IgG nAbs were reduced in CSF samples from MSA and PD patients compared to controls. Furthermore, anti-α-syn IgM nAb levels were relatively lower in CSF and plasma from MSA patients but were reduced only in plasma from PD patients. Interestingly, anti-α-syn IgG subclasses presented disease-specific profiles both in CSF and plasma. Anti-α-syn IgG1, IgG2 and IgG3 levels were relatively increased in CSF of MSA patients, whereas PD patients showed increased anti-α-syn IgG2 and reduced anti-α-syn IgG4 levels. CONCLUSIONS: Differences in the plasma/CSF distribution of anti-α-syn nAbs seem to be a common feature of synucleinopathies. Our data add further support to the notion that MSA and PD patients may have compromised immune reactivity towards α-syn. The differing α-syn-specific systemic immunological responses may reflect their specific disease pathophysiologies. These results are encouraging for further investigation of these immunological mechanisms in neurodegenerative diseases.


Assuntos
Autoanticorpos , Atrofia de Múltiplos Sistemas , Doença de Parkinson , alfa-Sinucleína/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Anti-Idiotípicos/sangue , Anticorpos Anti-Idiotípicos/líquido cefalorraquidiano , Anticorpos Anti-Idiotípicos/imunologia , Autoanticorpos/sangue , Autoanticorpos/líquido cefalorraquidiano , Autoanticorpos/imunologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/sangue , Atrofia de Múltiplos Sistemas/líquido cefalorraquidiano , Atrofia de Múltiplos Sistemas/imunologia , Doença de Parkinson/sangue , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/imunologia
10.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33833060

RESUMO

Parkinson's disease is characterized by accumulation of α-synuclein (αSyn). Release of oligomeric/fibrillar αSyn from damaged neurons may potentiate neuronal death in part via microglial activation. Heretofore, it remained unknown if oligomeric/fibrillar αSyn could activate the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome in human microglia and whether anti-αSyn antibodies could prevent this effect. Here, we show that αSyn activates the NLRP3 inflammasome in human induced pluripotent stem cell (hiPSC)-derived microglia (hiMG) via dual stimulation involving Toll-like receptor 2 (TLR2) engagement and mitochondrial damage. In vitro, hiMG can be activated by mutant (A53T) αSyn secreted from hiPSC-derived A9-dopaminergic neurons. Surprisingly, αSyn-antibody complexes enhanced rather than suppressed inflammasome-mediated interleukin-1ß (IL-1ß) secretion, indicating these complexes are neuroinflammatory in a human context. A further increase in inflammation was observed with addition of oligomerized amyloid-ß peptide (Aß) and its cognate antibody. In vivo, engraftment of hiMG with αSyn in humanized mouse brain resulted in caspase-1 activation and neurotoxicity, which was exacerbated by αSyn antibody. These findings may have important implications for antibody therapies aimed at depleting misfolded/aggregated proteins from the human brain, as they may paradoxically trigger inflammation in human microglia.


Assuntos
Inflamassomos/metabolismo , Microglia/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Parkinson/imunologia , alfa-Sinucleína/imunologia , Peptídeos beta-Amiloides/imunologia , Anticorpos/imunologia , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Microglia/citologia , Receptor 2 Toll-Like/metabolismo , alfa-Sinucleína/genética
11.
Brain ; 144(7): 2047-2059, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33704423

RESUMO

α-Synuclein, a key pathological component of Parkinson's disease, has been implicated in the activation of the innate and adaptive immune system. This immune activation includes microgliosis, increased inflammatory cytokines, and the infiltration of T cells into the CNS. More recently, peripherally circulating CD4 and CD8 T cells derived from individuals with Parkinson's disease have been shown to produce Th1/Th2 cytokines in response to α-synuclein, suggesting there may be a chronic memory T cell response present in Parkinson's disease. To understand the potential effects of these α-syn associated T cell responses we used an α-synuclein overexpression mouse model, T cell-deficient mice, and a combination of immunohistochemistry and flow cytometry. In this study, we found that α-synuclein overexpression in the midbrain of mice leads to the upregulation of the major histocompatibility complex II (MHCII) protein on CNS myeloid cells as well as the infiltration of IFNγ producing CD4 and CD8 T cells into the CNS. Interestingly, genetic deletion of TCRß or CD4, as well as the use of the immunosuppressive drug fingolimod, were able to reduce the CNS myeloid MHCII response to α-synuclein. Furthermore, we observed that CD4-deficient mice were protected from the dopaminergic cell loss observed due to α-syn overexpression. These results suggest that T cell responses associated with α-synuclein pathology may be damaging to key areas of the CNS in Parkinson's disease and that targeting these T cell responses could be an avenue for disease modifying treatments.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalite/imunologia , Encefalite/patologia , Degeneração Neural/imunologia , Doença de Parkinson/imunologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Doença de Parkinson/patologia , alfa-Sinucleína/imunologia
12.
J Alzheimers Dis ; 80(2): 813-829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579845

RESUMO

BACKGROUND: Alzheimer's disease (AD) and other tauopathies are neurodegenerative disorders characterized by cellular accumulation of aggregated tau protein. Tau pathology within these disorders is accompanied by chronic neuroinflammation, such as activation of the classical complement pathway by complement initiation factor C1q. Additionally, about half of the AD cases present with inclusions composed of aggregated alpha-synuclein called Lewy bodies. Lewy bodies in disorders such as Parkinson's disease and Lewy body dementia also frequently occur together with tau pathology. OBJECTIVE: Immunotherapy is currently the most promising treatment strategy for tauopathies. However, the presence of multiple pathological processes within tauopathies makes it desirable to simultaneously target more than one disease pathway. METHODS: Herein, we have developed three bispecific antibodies based on published antibody binding region sequences. One bispecific antibody binds to tau plus alpha-synuclein and two bispecific antibodies bind to tau plus C1q. RESULTS: Affinity of the bispecific antibodies to their targets compared to their monospecific counterparts ranged from nearly identical to one order of magnitude lower. All bispecific antibodies retained binding to aggregated protein in patient-derived brain sections. The bispecific antibodies also retained their ability to inhibit aggregation of recombinant tau, regardless of whether the tau binding sites were in IgG or scFv format. Mono- and bispecific antibodies inhibited cellular seeding induced by AD-derived pathological tau with similar efficacy. Finally, both Tau-C1q bispecific antibodies completely inhibited the classical complement pathway. CONCLUSION: Bispecific antibodies that bind to multiple pathological targets may therefore present a promising approach to treat tauopathies and other neurodegenerative disorders.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anticorpos Biespecíficos/farmacologia , Complemento C1q/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Anticorpos Biespecíficos/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Complemento C1q/imunologia , Humanos , Tauopatias/metabolismo , alfa-Sinucleína/imunologia , Proteínas tau/imunologia
13.
Mol Neurobiol ; 58(5): 2202-2203, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33411246

RESUMO

In protein aggregation disorders, we assume that, during the process of protein aggregation, different types of aggregated species (oligomers, protofibrils, fibrils, etc.) are formed, some of which can be toxic to cells/tissues/organs. Recent evidence from numerous studies in cell and animal models of disease suggest that oligomeric species of different proteins might be more toxic that the larger, fibrillar forms. However, we still lack definitive data on the nature of the toxic species, mostly due to our inability to detect and define the various protein species that form as protein aggregate. The terms used are often broad and do not capture inter-laboratory variation in protocols and methods used for the characterization of aggregates. Even antibody-based methods can be ambiguous, as antibodies are delicate tools. Therefore, systematic and interdisciplinary studies are essential in order to guide future developments in the field.


Assuntos
Anticorpos , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/imunologia , Humanos
14.
J Biol Chem ; 296: 100271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428933

RESUMO

Aggregation of α-synuclein (αS) leads to the hallmark neuropathology of Parkinson's disease (PD) and related synucleinopathies. αS has been described to exist in both cytosolic and membrane-associated forms, the relative abundance of which has remained unsettled. To study αS under the most relevant conditions by a quantitative method, we cultured and matured rodent primary cortical neurons for >17 days and determined αS cytosol:membrane distribution via centrifugation-free sequential extractions based on the weak ionic detergent digitonin. We noticed that at lower temperatures (4 °C or room temperature), αS was largely membrane-associated. At 37 °C, however, αS solubility was markedly increased. In contrast, the extraction of control proteins (GAPDH, cytosolic; calnexin, membrane) was not affected by temperature. When we compared the relative distribution of the synuclein homologs αS and ß-synuclein (ßS) under various conditions that differed in temperature and digitonin concentration (200-1200 µg/ml), we consistently found αS to be more membrane-associated than ßS. Both proteins, however, exhibited temperature-dependent membrane binding. Under the most relevant conditions (37 °C and 800 µg/ml digitonin, i.e., the lowest digitonin concentration that extracted cytosolic GAPDH to near completion), cytosolic distribution was 49.8% ± 9.0% for αS and 63.6% ± 6.6% for ßS. PD-linked αS A30P was found to be largely cytosolic, confirming previous studies that had used different methods. Our work highlights the dynamic nature of cellular synuclein behavior and has important implications for protein-biochemical and cell-biological studies of αS proteostasis, such as testing the effects of genetic and pharmacological manipulations.


Assuntos
Membrana Celular/genética , Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/genética , beta-Sinucleína/genética , Sequência de Aminoácidos/genética , Animais , Membrana Celular/química , Humanos , Lentivirus/genética , Neurônios/química , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Cultura Primária de Células , Agregados Proteicos/genética , Agregados Proteicos/imunologia , Agregação Patológica de Proteínas/genética , Ligação Proteica/genética , Ratos , Temperatura , alfa-Sinucleína/química , alfa-Sinucleína/imunologia , alfa-Sinucleína/isolamento & purificação , beta-Sinucleína/química , beta-Sinucleína/imunologia , beta-Sinucleína/isolamento & purificação
15.
J Parkinsons Dis ; 11(1): 71-92, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33104039

RESUMO

Parkinson's disease is a neurodegenerative disorder mainly characterized by the degeneration of dopaminergic neurons in the substantia nigra. Degenerating neurons contain abnormal aggregates called Lewy bodies, that are predominantly composed of the misfolded and/or mutated alpha-synuclein protein. Post-translational modifications, cellular stress, inflammation and gene mutations are thought to trigger its pathological misfolding and aggregation. With alpha-synuclein pathology being strongly associated with dopaminergic neuronal toxicity, strategies aimed to reduce its burden are expected to be beneficial in slowing disease progression. Moreover, multiple sources of evidence suggest a cell-to-cell transmission of pathological alpha-synuclein in a prion-like manner. Therefore, antibodies targeting extra- or intracellular alpha-synuclein could be efficient in limiting the aggregation and transmission. Several active and passive immunization strategies have been explored to target alpha-synuclein. Here, we summarize immunotherapeutic approaches that were tested in pre-clinical or clinical studies in the last two decades in an attempt to treat Parkinson's disease.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Imunização Passiva , Doença de Parkinson , Anticorpos de Domínio Único/uso terapêutico , Vacinação , alfa-Sinucleína , Animais , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , alfa-Sinucleína/imunologia , alfa-Sinucleína/metabolismo
16.
Neurobiol Dis ; 149: 105229, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352233

RESUMO

Alpha-synuclein (a-syn) can aggregate and form toxic oligomers and insoluble fibrils which are the main component of Lewy bodies. Intra-neuronal Lewy bodies are a major pathological characteristic of Parkinson's disease (PD). These fibrillar structures can act as seeds and accelerate the aggregation of monomeric a-syn. Indeed, recent studies show that injection of preformed a-syn fibrils (PFF) into the rodent brain can induce aggregation of the endogenous monomeric a-syn resulting in neuronal dysfunction and eventual cell death. We injected 8 µg of murine a-syn PFF, or soluble monomeric a-syn into the right striatum of rats. The animals were monitored behaviourally using the cylinder test, which measures paw asymmetry, and the corridor task that measures lateralized sensorimotor response to sugar treats. In vivo PET imaging was performed after 6, 13 and 22 weeks using [11C]DTBZ, a marker of the vesicular monoamine 2 transporter (VMAT2), and after 15 and 22 weeks using [11C]UCB-J, a marker of synaptic SV2A protein in nerve terminals. Histology was performed at the three time points using antibodies against dopaminergic markers, aggregated a-syn, and MHCII to evaluate the immune response. While the a-syn PFF injection caused only mild behavioural changes, [11C]DTBZ PET showed a significant and progressive decrease of VMAT2 binding in the ipsilateral striatum. This was accompanied by a small progressive decrease in [11C]UCB-J binding in the same area. In addition, our histological analysis revealed a gradual spread of misfolded a-syn pathology in areas anatomically connected to striatum that became bilateral with time. The striatal a-syn PFF injection resulted in a progressive unilateral degeneration of dopamine terminals, and an early and sustained presence of MHCII positive ramified microglia in the ipsilateral striatum and substantia nigra. Our study shows that striatal injections of a-syn fibrils induce progressive pathological synaptic dysfunction prior to cell death that can be detected in vivo with PET. We confirm that intrastriatal injection of a-syn PFFs provides a model of progressive a-syn pathology with loss of dopaminergic and synaptic function accompanied by neuroinflammation, as found in human PD.


Assuntos
Corpo Estriado/metabolismo , Progressão da Doença , Neurônios Dopaminérgicos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Agregados Proteicos/fisiologia , alfa-Sinucleína/toxicidade , Animais , Corpo Estriado/imunologia , Corpo Estriado/patologia , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/patologia , Feminino , Injeções Intraventriculares , Ratos , Ratos Sprague-Dawley , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/imunologia
17.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182554

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut-brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.


Assuntos
Doença de Parkinson/etiologia , Animais , Autoimunidade , Biomarcadores/metabolismo , Citocinas/imunologia , Citocinas/fisiologia , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/fisiologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Inflamação/fisiopatologia , Microglia/imunologia , Microglia/fisiologia , Degeneração Neural/imunologia , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/etiologia , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Transdução de Sinais , Viroses/complicações , alfa-Sinucleína/imunologia , alfa-Sinucleína/fisiologia
18.
Mikrochim Acta ; 187(9): 509, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32833087

RESUMO

A highly sensitive and specific surface plasmon resonance (SPR) method using one anti-alpha-synuclein antibody (anti-αS) and titanium phosphate nanoparticles (Ti4+@TiP) was developed for quantitative evaluation of phosphorylated αS level which was defined by the ratio of p-αS to total alpha-synuclein (t-αS) (p-αS/t-αS). The close affinities of anti-αS to αS (0.975 pM-1) and p-αS (0.938 pM-1) were obtained. Based on this fact , both αS forms were simultaneously captured and the t-αS was quantified using the anti-αS immobilized Au chip. With the selective recognition of Ti4+@TiP nanoparticles, the p-αS was quantified. The dynamic ranges of our method were 1.0~20.0 pg mL-1 for the detection of t-αS and 0.1~10.0 pg mL-1 for that of p-αS. The analysis of αS- and p-αS-spiked artificial cerebrospinal fluid samples revealed the high accuracy of the method. Furthermore, the concentrations of αS and p-αS in clinical CSF samples collected from three healthy donors were determined and displayed a high correlation with the results from a commercial ELISA kit, confirming the viability and of the proposed method. The method is convenient, economical, and practical for the evaluation of phosphorylated αS level with high sensitivity and selectivity. It is of great significance for the early diagnosis of PD and the evaluation of PD progression.Graphical abstract.


Assuntos
Nanopartículas Metálicas/química , Titânio/química , alfa-Sinucleína/líquido cefalorraquidiano , Anticorpos Imobilizados/imunologia , Humanos , Imunoensaio/métodos , Fosforilação , Ressonância de Plasmônio de Superfície/métodos , alfa-Sinucleína/química , alfa-Sinucleína/imunologia
19.
J Neuroinflammation ; 17(1): 214, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680537

RESUMO

BACKGROUND: α-Synuclein (α-syn) is a pre-synaptic protein which progressively accumulates in neuronal and non-neuronal cells in neurodegenerative diseases such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy. Recent evidence suggests that aberrant immune activation may be involved in neurodegeneration in PD/DLB. While previous studies have often focused on the microglial responses, less is known about the role of the peripheral immune system in these disorders. METHODS: To understand the involvement of the peripheral immune system in PD/DLB, we evaluated T cell populations in the brains of α-syn transgenic (tg) mice (e.g., Thy1 promoter line 61) and DLB patients. RESULTS: Immunohistochemical analysis showed perivascular and parenchymal infiltration by CD3+/CD4+ helper T cells, but not cytotoxic T cells (CD3+/CD8+) or B cells (CD20+), in the neocortex, hippocampus, and striatum of α-syn tg mice. CD3+ cells were found in close proximity to the processes of activated astroglia, particularly in areas of the brain with significant astrogliosis, microgliosis, and expression of pro-inflammatory cytokines. In addition, a subset of CD3+ cells co-expressed interferon γ. Flow cytometric analysis of immune cells in the brains of α-syn tg mice revealed that CD1d-tet+ T cells were also increased in the brains of α-syn tg mice suggestive of natural killer T cells. In post-mortem DLB brains, we similarly detected increased numbers of infiltrating CD3+/CD4+ T cells in close proximity with blood vessels. CONCLUSION: These results suggest that infiltrating adaptive immune cells play an important role in neuroinflammation and neurodegeneration in synucleinopathies and that modulating peripheral T cells may be a viable therapeutic strategy for PD/DLB.


Assuntos
Imunidade Adaptativa/fisiologia , Encéfalo/metabolismo , Doença por Corpos de Lewy/metabolismo , Linfócitos T/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/imunologia , Encéfalo/patologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Doença por Corpos de Lewy/imunologia , Doença por Corpos de Lewy/patologia , Masculino , Camundongos , Camundongos Transgênicos , Linfócitos T/imunologia , Linfócitos T/patologia , alfa-Sinucleína/imunologia
20.
Expert Opin Investig Drugs ; 29(7): 685-695, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32419521

RESUMO

INTRODUCTION: Advances in the understanding of the mechanisms that lead to Lewy body pathology in Parkinson's disease (PD) have yielded rationales for tackling neurodegeneration associated with α-Synuclein (α-Syn) misfolding, aggregation, and/or its related spreading. Immunization therapies targeting distinct α-Syn epitopes (conformational and linear) that aim to limit extracellular spread in the brain are now in development. Completed and ongoing studies have enrolled early PD patients without considering individual clinical differences and assume a common pathogenetic mechanism of the disease. Such approaches have led to disappointing results; this is most likely attributed to trial methodology and inadequate patient selection rather than underlying target biology. AREAS COVERED: This review presents the status of immunotherapies that target α-Syn epitopes in PD. Mechanisms associated with neurodegeneration are examined along with the limitations of current antibody research strategies and ongoing clinical trials. Patient stratification based on disease progression is discussed and the article culminates with author suggestions on how to progress future clinical trials. EXPERT OPINION: The efficacy of passive and active immunotherapies is inadequately evaluated in ongoing clinical trials where participating patients have various progression rates, genetic backgrounds, and clinical phenotypes. Future disease-modifying studies can overcome these limitations by enrolling patients based on progression pathways and genotypic contribution to disease manifestations.


Assuntos
Imunização Passiva/métodos , Imunoterapia Ativa/métodos , Doença de Parkinson/terapia , Animais , Progressão da Doença , Humanos , Doença de Parkinson/imunologia , Doença de Parkinson/fisiopatologia , Seleção de Pacientes , alfa-Sinucleína/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...